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ABSTRACT

Computational results are reported for the effect grid
choice has on a solution to a Markov decision problem. The method
used to discretize and reduce a continuous state problem can have
significant effects on both the optimal policy calculated and on the
estimated value of that policy. Tail probabilities of the ergodic
distribution of an optimal policy appear to be quite sensitive to
grid choice. Several a posterior measures of the error due to
approximating the original problem on a reduced grid are compared

with the actual error found.



I. In applying Markov decision processes (MDP's) to real life
situations, an initial decision the modeler must face is the choice
of grid over which to solve the problem. This arises because the
problem is often described first as a stochastic model over a
continuous state space; or else, the initial problem may be too
large to solve.

The modeler must select an appropriate grid, "collapse" the
original problem into the smaller problem by some method, solve the
smaller problem, and extend both the optimal policy and the optimal
value function back to the original problem. In this paper, several
different techniques for choosing a grid are explored. Collapsing an
MDP into a smaller grid is mathematically equivalent to aggregating
or approximating MDP's as discussed in [8, 9, 10]. Section II
explores how well different techniques perform for a model that arises
in salmon management. For each technique, several different measures
of performance are explored. Section III compares the results of
section II with bounds that have been proposed for aggregated MDP's
[3, 8, 9]. These bounds are checked both for how close they are to
the true value of the performance measure, and also for how well they
reflect the superiority of one particular method of aggregating and
disaggregating over another. The reader is assumed to be familiar

with both the notation and terminology in [3, 8, 9, 117.

II. Salmon spawn upriver in Alaska, and then the young salmon

swim downriver to the ocean. Depending on the river, in a few years
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the salmon return upriver to spawn again. The salmon are harvested by
various types of fishermen as they run upriver. The released salmon

are called spawners, the returning salmons recruits.

Mathews [2] has postulated the following spawner-recruit model
for salmon in the Naknek River in Alaska: let X be the number of
recruits that come upriver in period t, Vi the number of spawners

released at the end of period t, and:
X = ed6 727 expi ~0.859
t+1 SPEl Y SXPTY. 027

where d is a random variable distributed as N(0O, 0.1444). For computation

the problem is discretized on the following grid (in units of 106 fish):

X = {0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1, 1.175,
1.25, 1.375, 1.5, 1.625, 1.75, 1.875, 2, 2.5, 3, 3.5, 4,
4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9}
as follows:

State space = X

Decision space Y(x) ={y|0 <y < x; yeX, xeX}

Transition probabilities: Pr{xt+1 5_€lyt} = Pr{d < 1n(e) - alyt}

where a = 1n(6.727) + ln(yt) - 0.859yt
Given any y € X, the probability of going to x€X is calculated as the
difference of the cdf given y evaluated at x and the next smallest value

in X.
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This 31 point grid is considered for the purposes of this
paper as the "original" problem. A discount factor of a = 0.97 is used

throughout, and the problem is to:

t—l(x - y)

[e,0]
maximize I a
t t

t=1
The optimal value function, optimal policy, ergodic distribution and
gain rate for the original problem are given in Table 2.1. It is
known a priori (see [4]) that a base stock policy is optimal. The true
optimal policy has a base stock size of 750,000 fish, a mean annual
harvest of 1,856,382 fish, and only a 3% chance of long run extinction,
given the model.

The original grid was partitioned into 12 subsets as follows:

Subset No. States in subset

1 0

2 0.125, 0.25, 0.375, 0.5
3 0.625, 0.75, 0.875, 1

4 1.125, 1.25, 1.375, 1.5
5 1.625, 1,75, 1.875, 2

6 2.5, 3

7 3.5, 4

8 4.5, 5

9 5.5, 6
10 6.5, 7

11 7.5, 8

12 8.5, 9
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For the first trials, a reduced grid of
X, = {o, 0.5, 1, 1.5, 2, 3, 4, 5, 6, 7, 8, 9}

was selected. Y(x) is defined as {y]|0 <y<x; yeX xe:Xl} and the

1’

transition probabilities are calculated as:

P = = P = X
r{xt+1 xs:Xllyt} z r{xt+1 se Iyt}
S E
subset
including x
This follows [1, 9].

Two different one-period return functions were tried: the
first uses the point estimate x-y. The second uses the average return
from all states in a subset for which y is a feasible decision. For
example, the return from choosing zero from state 0.5 is 715. This

second one-period return function was tried because it is the one-

period return that results from aggregating the LP tableau for the MDP

using fixed weight row and column aggregation (see Zipkin [11]) in
order to arrive at the same reduced problem. For the second trials,
a grid of
X2 = {0, 0.25, 0.75, 1.25, 1.75, 2.5, 3.5, 4.5, 5.5,
6.5, 7.5, 8.5}
was used. This is the midpoint approximation to the partition. Transition
probabilities and one-period returns are calculated as before.
Solutions to the aggregate problems were extended to the larger
problem in a variety of ways. The optimal policy, since it is known to
be of base stock form, was extended by the following rule: let Xy be

the state used in the grid from the ith partition, then:
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x, if A(Xi) = X,
y:
min (A(xi), x) otherwise
where A(*) is an optimal policy function.
Extensions of the optimal value function were calculated two

ways. Method 1 involves a constant extension across a subset [1, 9],

that is:

f(x) = f(xi) for x € subset i

Method 2 consists of performing one iteration of successive
approximations on the extended value function of method 1.

Five measures of comparison are used between the true solution
and an approximate solution. Let f(x) be the optimal value function of
the original problem, and eE(X) the extension of the optimal value

function for a reduced problem. Then measure one [9] is:

sup | f(x) - eE(x) I

xeX
The second measure is | Tf(x) - Ze%(x)l' I f(x) 1is the value of the
X X X

Measures 3, 4, and 5 arise from the relationship between
the dual variables of a linear programming solution to an MDP, and
the discounted normalized fraction of years that we observed state
x and take action y (Sobel [7]). 1If the sequence Vi i=1, ...,
number of states, is such that vi/ﬁxq_equals the initial probability

of being in state i, then:



-X
(1-a) u
" = discounted normalized fraction of years that
i i state x is observed and action y is taken.

where ﬁ; is an optimal dual variable in the LP. Measure 3 is:

0.03
12

0.03
31

x I f(x) - X ZE(X)
X X

If the initial probability distribution is uniform, then

(1-0)

= _ -X
Number of states L f(x) = (1-0) I L u G(x, y)

xeX xeX yeY(x)

which is the sum over all states and actions of the discounted fraction
of years that (x, y) is observed times the return during those periods.
In a sense, it is like a '"discounted mean' harvest.

Measure 4 is the same as measure 3, except now the optimal
policy from the smaller model is evaluated on the larger grid.

Measure 5 compares the cumulative discounted fraction of
years that the Markov chain arising from an optimal policy is less
than or equal to a given value on the different grids.

The results presented here are for the discounted fraction
of years that a state—action pair are taken, starting from an initial
uniform distribution. It should be mentioned, however, that similar
qualitative results as what follows have also been found for the

following cases:



(1) Discounted fraction of years starting from a non-

uniform distribution

of the Markov chain that arises from

consistent comparison of aggregation

The particular results are

(2) Mean and tail behavior of the stationary distribution

and from linear programming.

The eight trials are as follows:

Trial State One-period
No. space return function
1 X1 Point return
2 Xl Average return

3 X1 Point return
4 X1 Average return
5 X2 Point return
6 X2 Average return
7 X2 Point return
8 X Average return

Average return from a given action over the partitions consistently

performs better than the point return, for just about all grids and

following an optimal policy.

chosen because they allow for

Method of
extension

Constant over subset
Constant over subset
Successive approximation
Successive approximation
Constant over subset
Constant over subset
Successive approximation

Successive approximation

results from dynamic programming

step

step

step

step

The results are summarized in Table 2.2 and in Figure 2.1.

for most of the measures of comparison.

The midpoint of the partition as the selected state appears

to give a better result than using endpoints. For this example it

is

necessary to be cautious in drawing conclusions, because the midpoint

grid X

Xl does not.

has the true base stock size in it, while the endpoint grid
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One iteration of successive approximation on the extended
optimal value function produced only a small increase in accuracy in
terms of measures 1 or 2. However, one iteration in all eight cases
found the true optimal policy. Thus, though our estimate of the value
function has not improved greatly, an optimal policy has been found.
This one-step procedure is similar to that of [5], where the value of
the equivalent deterministic model is calculated first. The computa-
tional equivalent of one iteration of successive approximation must be
performed in calculating the bounds discussed in section IIT.

The one disturbing feature of this analysis is the comparisons
of measure 5. In practice, in managing a fishery, both the probability
of extinction and the probability of zero catch are of some concern,
and often sensitivity analysis will be done describing the tradeoff
between average per period catch and percentage of time there is no
catch. Both grids Xl and X2, evaluated at their best policies (in the
case of X, the true optimal policy) nearly triple discounted probability
of extinction and the discounted fraction of years when there is no
allowable catch as compared to the true value calculated on X (from
3.9% to 9.3%). Further, the estimated "discounted mean' harvest is off
by amounts ranging from 12,000 fish to 1.6 million fish. This suggests
that particularly when post-optimality analysis is being done, the
grid should be expanded step by step until some stability is achieved
in the key areas of interest.

One final trial was done. The absorbing state (zero) was

dropped from the grid. The results are summarized in Table 2.3. The
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value of the LP solution is 1,709.6359. The optimal policy is base
stock with stock size 0.75. The "discounted mean" harvest is 1.6028.
It is worth mentioning that when this problem is solved using successive
approximations it took 320 iterations to converge at a tolerance of
0.0001. However, when methods of extrapolating forward to put bounds

on the true value function are used [6], the same procedure converges

in five iterations at the 0.0001 level. Computations with the

absorbing state can be modified similarly in order to reduce the

computational effort necessary.

I1I. In the previous section, a comparison is made of several ways
of choosing a grid and aggregating a larger problem into a smaller
problem. In that instance, the 'true'" original solution is known.
However, usually grids and aggregation procedures are applied to
problems vhere the "true" solution is never found. Several authors

[3, 8, 9, 10] have developed bounds to compare the approximate solution
with the unknown true solution. The reader is assumed to be familiar
with the terminology and notation of these papers, and is referred to
those articles for further details.

In this section, these bounds are calculated for several of
the trial runs of the previous section. The different bounds are
compared both as to how "tight'" they are, and also as to how well they
reflect the fact that one reduced problem gives a "better" solution
than another. This certainly would be a desirable feature of any

bound.
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Whitt [9] derives both a priori and a posterior bounds of

the form of measure 1:

maximum h(x, v, ef(x)) - h(x, v, f(x))‘
xeX
vy € Y(x)
~ = Yy .
where h(x, v, ef(x)> G(x, yv) + a?ij ef(j)

and ﬁ(x, Y, f(x? is similarly defined for the reduction of the full

model into the smaller model. The a posterior bounds are calculated
for trials 1, 2, 5, and 6, and the results are summarized in Table

3.1.

Table 3.1
Trial No. A posterior bound True value
1 379.5298 6.5643
2 347.57 2.3800
5 353.3910 6.4973
6 314.996 1.022

These bounds are very loose. For all of the trials, the
bounds are much greater than the true optimal value function. The
bounds do reflect, however, the superior performance of the grid X2
and the average return function over the partition.

Bounds for measure 2 are given by [3, 8, 11]. These are
summarized in Table 3.2. These bounds are calculated for the extended

value function.
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Table 3.2

Trial Actual value of the
No. Unimproved bound Improved bound absolute difference

*
1 772.499 < z° < 2,137.013 772,499 < z' < 2,137.013  164.2652

* k3
2 689.79 < z < 2,978.533 689.79 < z

| A

2,314.5908 60.4832
*
5 646.13375_2* < 2,639.7954 646.1337< z < 2,278.2525 179.6471

* *
6 707.908 < z < 2,738.113  707.908 < 2

IA

2,194.9325 12.0681

The upper bounds for the partitions, Py in the notation of

[11], are given below.

Variables aggregated into choosing this action from each state

ParFi— in the partition
tion .
0.5 1 1.5 2 3 4 5 6 7 8 9

0 (0.25) (0.35) (1.25) (1.75) (2.5) (3.5) (4.5) (5.5) (6.5) (7.5) (8.5)
1 0 - - - -= - - - - - -~ -
2 0 10 - - - - - - - - -~ -
3 0 10 25 - - - - - —_ - _— -
4 0 0 125 125 - - - - - - _— _—
5 0 0 500 500 125 - - - - -_ _ -
6 0 0 500 500 125 50 - - - - - -
7 0 0 250 250 125 50 25 - _— - _ -
8 0 0 250 250 125 50 25 10 - -_ _ -
9 0 0 250 250 125 50 25 10 - _— - -_
10 0 0 250 250 125 50 25 10 - - - -
11 0 0 250 250 125 50 25 10 - - - —_
12 0 0 250 250 125 50 25 10 - —_ - -
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These bounds are reasonably tight, however they do not reflect
which method of aggregation actually performs better. These bounds are
tighter than the previous one for two reasons. Firstly, the bound in [9]
essentially uses 0/l-0 as the value for P> assuming there are 31
individual partitions. In this case, a/1-0 = 32.333 which is 50% of
any of the true values. The bounds in [8] calculated above allow
for greater precision in the choice of Py

Secondly, the first bound includes any difference, whether
positive or negative in sign. The second bound has a zero contribution
to the error term from any column for which the extended vector is dual
feasible in the LP solution to an MDP. This eliminates the entry that

causes the larger absolute deviations in the first bound.

IV. Discussion
Several methods of approximating an MDP have been explored,
and a posteriori bounds have been tested. The results seem to indicate:
1) When aggregating, it is best to use a state at a midpoint
of the partition as the representative state from each subset of the grid.
2) The return function should be aggregated as the average
return from each state in the partition for which the given action is
feasible. Whenever feasible, one iteration of successive approximation
should be done on the extended value function.
3) The actual error, by several criteria, is quite small.

However, several key features of the long run probabilistic behavior of

an optimal policy are sensitive to the grid size.
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4) A posterior bounds can often be very loose, and may not
reflect in fact how well one aggregate problem approximates the true
problem as compared with a second aggregate problem.

5) The most important factor influencing the a posterior
bounds is the value used to "blow up" the error terms by some appropriate
amount. Little seems to be known of systematic or better ways to choose
the values of these terms.

6) Convergence of successive approximations for the real
models considered here is greatly speeded up by extrapolating an upper and
lower bound for the true optimal value function, and using the largest
of these differences as the convergence criterion. ¥For one example, at
a 0.0001 tolerance level, convergence was achieved in 5 iterations using
this method as compared to 320 iterations required otherwise.

These results are not definitive, as they deal with one model
over a very limited choice of grids. However, in most instances, the
results can be explained in terms of the problem; this makes it reasonable

to assume that these results are valid beyond this problem.
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Table 2.1.--Solution to the original problem.

Discounted fraction
State Optimal value function of years that x; is
no greater than the

given value

0 0 0.0323
0.125 59.7464 0.0333
0.25 60.3404 0.0342
0.375 60.7503 0.0353
0.5 61.0846 0.0364
0.625 61.3370 0.0376
0.75 61.5213 0.0391
0.875 61.6463 0.0416
1 61.7713 0.0460
1.125 61.8963 0.0536
1.25 62.0213 0.0660
1.375 62.1463 0.1078
1.5 62.2713 0.1389
1.625 62.3963 0.1760
1.75 62.5213 0.2183
1.875 : 62.6463 0.2645
2 62.7713 0.4620
2.5 63.2713 0.6398
3 63.7713 0.7718
3.5 64.2713 0.8594
4 64.7713 0.9140
4.5 65.2713 0.9472
5 65.7713 0.9668
5.5 66.2713 0.9786
6 66.7713 0.9858
6.5 67.2713 0.9903
7 67.7713 0.9933
7.5 68.2713 0.9954
8 68.7713 0.9971
8.5 69.2713 0.9991
9 69.7713 1.0

1,918.167158



Table 2.1.--Continued.

Optimal policy: Base stock given by y = minimum (x, 0.75)

"Discounted mean'" harvest: 1.856382

Value of LP solution: 1,918.167158
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Table 2.2b
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Discounted fraction of years that X, is no greater than given value.

[

.25

.75

.25

(9,

.75

Base stock size = 0.75
Midpoint of partition used

Fraction of years

Base stock size =1
Endpoint of partition used

Fraction of vears

0.

0

0833

.0858

.0934

.1804

.4852

.7795

.9151

.9658

. 9844

.9922

.9965

0.0833

0.0858

0.0909

0.1531

0.4187

0.7238

0.8858

0.9529

0.9792

0.9903

0.9957




Table 2.3.--Optimal value function when zero is removed from the grid.

State £ (x)
0.125 53.1691
0.25 53.7283
0.375 54.0825
0.5 54.3591
0.625 54.5684
0.75 54.7241
0.875 54.8491
1 54.9741
1.125 55.0991
1.25 55.2241
1.375 55.3491
1.5 55.4741
1.625 55.5991
1.75 55.7241
1.875 55.8491
2 55.9941
2.5 56.0991
3 56.5991
3.5 57.0991
4 57.5991
4.5 58.0991
5 58.5991
5.5 59.0991
6 59.5991
6.5 60.0991
7 60.5991
7.5 61.0991
8 61.5991
8.5 62.0991
9 62.5991

Value of IP solution = 1,709.6359

Opt policy = y = min (x, 0.75)
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Figure 2.1.--Graph of distributions from Table 2.2b.



